

patient@home

3D measurement for monitoring wound healing

Line Bisgaard Jørgensen MD, PhD student Department of Endocrinology Department of Plastic Surgery Odense University Hospital

Introduction

- Over 422 million people worldwide with diabetes
- ≈15% of diabetes patients develop diabetic foot ulcers
- Treatment of diabetic foot ulcers: €100 million in DK
- Risk of amputation

Wound measurement in clinical practice

- Predicting outcomes
- Monitoring the effect of treatment (e.g. clinical studies)
- Clinical decision support
- Improving patient compliance

Traditional measurement methods

Ruler method (length x width)

Planimetric method

2D image method

3D measurement methods

International Wound Journal ISSN 1742-4801

ORIGINAL ARTICLE

Methods to assess area and volume of wounds – a systematic review

Line Bisgaard Jørgensen¹, Jens A Sørensen², Gregor BE Jemec³ & Knud B Yderstræde¹

1 Department of Endocrinology, Odense University Hospital and Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark 2 Department of Plastic Surgery, Odense University Hospital and Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark 3 Department of Dermatology, Roskilde Hospital and Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark

- Lack of accuracy
- High cost
- Complex in handling

3D-WAM kamera

- Comprises:
 projector + 3 cameras
- Developed by Teccluster (Danish)

 To assess wound characteristics and measure wound size in 3D

patient (0)

Wound measurements by the 3D image

- 2D area (surface area)
- 3D area
- Volume
- Perimeter

Study of wound characteristics

Skin Research and Technology 2015; 21: 485–492 Printed in Singapore All rights reserved doi: 10.1111/srt.12218 © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd Skin Research and Technology

Validation of a new imaging device for telemedical ulcer monitoring

B. S. B. Rasmussen¹, J. Froekjaer², L. B. Joergensen¹, U. Halekoh³ and K. B. Yderstraede¹

¹Department of Medical Endocrinology, Odense University Hospital, Denmark, Odense, Denmark, ²Department of Orthopedic Surgery, Odense University Hospital, Denmark, Odense, Denmark and ³Epidemiology, Biostatistics and Biodemography, University of Southern Denmark, Odense, Denmark

Found a better correlation to clinical assessment (gold standard) compared to 2D images (iPhone 4s) assessed by kappa values.

Higher kappa values for the 3D images

Aim:

- Estimate interrater variability (different clinicians)
- Estimate intrarater variability (same clinician)
- Compare with traditional methods (2D image and gel injection)

Study design

- Method comparison study
- 4 clinicians
- 48 wounds were measured by 2 clinicians with all 3 methods:
 - 2 x 3D image (192 measurements)
 - 1 x 2D image (96 measurements)
 - 1 x Gel injection (96 measurements)

Intrarater variability

Intrarater variability

Intrarater and interrater variability

Wound	Intraclass	Interclass
measurement	Correlation	Correlation
	Coefficient (ICC ₁)	Coefficient (ICC₂)
2D area	0.996	0.996
3D area	0.999	0.999
Perimeter	0.998	0.998
Volume	0.755	0.722

Method comparison- 2D area

Method comparison-volume

Strengths

- Wounds in different sizes and types were used
- Large sample size
- Useful in large, irregular wounds
- Wounds located on curved part of the body (e.g. heel)
- Electronic data to be used in telemedicine

Limitations

- Undermined wounds
- Moist and blood could potentially affect the 3D images (3D area and volume)
- Some user interpretation (outlining of the wound margin)
- Limitations in volume measurements (shallow, flat wounds or wounds located on a toe)

Conclusion

- Four wound measurements with low intrarater and interrater variability
- The 3D measurements are comparable with traditional measurement methods (2D area and volume)
- Applicable for different wound types and sizes
- Potential for future use in telemedicine

